Diagnostic accuracy of multiplex RT-PCR compared to standard bacterial culture for tracheal aspirates in children with suspected pneumonia.

1Department of Pediatrics, Critical Care Medicine, CU-SOM 2Department of Pediatrics, Infectious Diseases, CU-SOM 3Department of Biostatistics and Informatics, University of Colorado School of Public Health 4Department of Epidemiology, CU-SOM 5Department of Pediatrics, Emergency Medicine 6Department of Medicine, Infectious Diseases, University of California San Francisco 7Department of Pediatrics, Critical Care Medicine, University of Washington School of Medicine 8Chan Zuckerberg Biohub, San Francisco, CA 9Department of Pediatrics, Critical Care, University of Arkansas for Medical Sciences

BACKGROUND

- Bacterial lower respiratory tract infection (LRTI) is a significant cause of morbidity and mortality in children who require mechanical ventilation (MV).
- Diagnosis is made with bacterial cultures of lower respiratory tract specimens.
- The current approach of testing is limited:
 - Resource intensive nature
 - Low sensitivity and specificity (colonization)
 - Time to grow and identify bacteria that may delay appropriate antibiotic administration
- Available multiplex real-time polymerase chain reaction (RT-PCR) assays for detection of bacteria have potential to provide rapid results and lead to more targeted antibiotic management

OBJECTIVES

1. Evaluate concordance between bacterial culture and RT-PCR in critically ill children requiring mechanical ventilation.
2. Calculate time to effective and optimal antibiotics from the time clinical culture was obtained relative to the expected 3-hour turnaround time of the Biofire panel.

METHODS

- Patients ages 31 days to 17 years who required MV for ≥ 72 hours (n = 126)
- Research tracheal aspirates collected <48 hours after intubation evaluated using the Biofire Pneumonia Panel (RT-PCR based panel of 15 typical bacterial pathogens)
- Inclusion criteria: concomitant clinical and research tracheal aspirate samples available (n = 54)
- Compared RT-PCR to bacterial culture results from clinically obtained tracheal aspirates collected <48 hours after intubation.
- Chart review: antibiotic administration and timing of culture results, time to effective (activity against organism) and optimal (appropriate for organism) antibiotics

RESULTS

- Table 1. Subject Characteristics
- Figure 1. Organism by bacterial culture compared to Biofire Pneumonia Panel RT-PCR
- Figure 2. Agreement between culture and Biofire Pneumonia Panel RT-PCR
- Figure 3. Timeline: culture results, time to antibiotics, turnaround time of RT-PCR

SUMMARY

- Compared to bacterial culture of TA samples, RT-PCR identified bacterial DNA in a greater number of patients but was not able to detect all bacteria found on culture.
- Most organisms as most organisms found on culture were not detectable by RT-PCR, were non-pathogens, or were polymicrobial.
- Overall agreement between culture and RT-PCR was variable by organism in children with suspected lower respiratory tract infection.
- RT-PCR could have decreased time to optimal antibiotics in the majority of patients

CONCLUSIONS

- RT-PCR (Biofire Pneumonia Panel) represents a potential adjunctive diagnostic tool to decrease time to optimal antimicrobial therapy.
- However, RT-PCR may increasingly detect colonization and not true infection.
- Limitations: testing not performed on same sample, relatively small sample size

DISCLOSURES

- The authors have no relevant conflicts of interest.
- Funding Sources: NH HLBI, 1R01HL162102, NIH NICHD U10 HD083171, Biofire BFD-PN-19-009 a