Using AI to personalize and optimize the treatment of craniosynostosis

Antonio R. Porras, PhD

Assistant Professor

Department of Biostatistics and Informatics, Colorado School of Public Health Departments of Pediatrics, Surgery and Biomedical Informatics, School of Medicine **University of Colorado Anschutz Medical Campus**

Department of Pediatric Neurosurgery Children's Hospital Colorado

Research Director

Department of Pediatric Plastic & Reconstructive Surgery Children's Hospital Colorado

colorado school of public health

UNIVERSITY OF COLORADO COLORADO STATE UNIVERSITY UNIVERSITY OF NORTHERN COLORADO

Craniosynostosis

> Early fusion of one or more cranial sutures. It affects ~1 in 1,600 - 1,800 live births.

Traditional management of craniosynostosis

Pre-surgical evaluation

Treatment

Post-surgical evaluation

[Mendoza et al, Personalized assessment of craniosynostosis via statistical shape modeling, Med Imag Anal, 2014]

[Porras et al, Locally Affine Diffeomorphic Surface Registration and Its Application to Surgical Planning of Fronto-Orbital Advancement, IEEE Trans Med Imag, 2018]

Pre-surgical evaluation

Treatment

Post-surgical evaluation

Identification of single fused suture

- Sagittal: 100% sensitivity, 99% specificity
- Unicoronal: 100% sensitivity, 99% specificity
- Metopic: 94% sensitivity, 100% specificity

[Porras et al., Quantification of Head Shape from Three-Dimensional Photography for Presurgical and Postsurgical Evaluation of Craniosynostosis, Plast Reconst Surg, 2019]

Challenges

> Cannot quantify local volumetric anomalies in the context of age and sex

> Pre-surgical evaluations are not accurate at the time of surgery

Post-surgical evaluation cannot be contextualized and interpreted

Challenges

Craniosynostosis is a developmental disorders and must be studied as such

AI can learn personalized growth without longitudinal data

Developmental modeling

Developmental generative modeling

	Method	PSNR	Shape distance (mm)	Volume difference (L)				
	cGAN	22.41 ± 3.91*	7.54 <u>+</u> 4.05*	0.28 ± 0.22*				
	cVAE	22.32 <u>+</u> 3.82*	6.62 <u>+</u> 3.41*	0.24 <u>+</u> 0.20*				
	AB-GAN	25.41 <u>+</u> 2.28*	6.39 <u>+</u> 3.36*	0.27 <u>+</u> 0.19*				
	Baseline	24.06 ± 3.01*	5.92 <u>+</u> 2.96*	0.20 <u>+</u> 0.17*				
	TID-GAN	25.22 <u>+</u> 2.35	4.89 <u>+</u> 2.76*	0.16 ± 0.12*				
	REC-GAN	25.52 <u>+</u> 2.33	4.92 <u>+</u> 3.01*	$0.18 \pm 0.11^{*}$				
	Proposed	25.55 <u>+</u> 2.21	4.66 <u>+</u> 2.66	0.14 ± 0.12				
	* statistical significance							
4	\bigcirc	\bigcirc)	11			
3	\bigcirc	\bigcirc		\bigcirc				
	6 months	2.5 years	4.5 years 6.5	years 8.5 years				

Quantitative characterization of development

[Elkhill et al, Geometric learning and statistical modeling for surgical outcomes evaluation in craniosynostosis using 3D photogrammetry, Comp Meth Prog Biomed, 2023]

Evaluation of cranial growth

Current: simple non-descriptive metrics

Ongoing research

Evaluation of increased intracranial pressure

 Subjective evaluation of unspecific symptoms of chronic or non-acute intracranial pressure increase

Identification of increased intracranial pressure

ICH - neoplasm

Normative

Male, 7 years and 8 months old

Identification of increased intracranial pressure

- Normative
 Chronic intracranial hypertension
- Non-syndromic sagittal craniosynostosis

[Liu et al, Cranial bone thickness and density anomalies quantified from CT images can identify chronic increased intracranial pressure, Neurorad, 2024]

Clinical translation

Optimizing clinical workflows with SHAPE

[Görg et al, SHAPE: a visual computing pipeline for interactive landmarking of 3D photograms and patient reporting for assessing craniosynostosis, Under review]

00

Clinical translation

Automated EHR reports

Craniofacial measurements

				-
Date of original image				
Age at image (months)	3.29	8.32	11.31	3
Biocular Width	69.96	70.98	72.57	
Cephalic Index	68.36	69.21	72.25	4
Cranial Vault Asymmetry Index	1.00	1.02	1.02	2
Craniosynostosis risk score %	100.00	82.62	0.00	
Cutaneous Upper Lip Height	10.26	8.28	9.57	2
Face Height	71.30	77.84	88.19	
Face Width	84.70	94.75	88.53	4
Forehead Width	91.44	94.69	97.24	
Head Circumference	2618.92	2705.33	2829.90	
Head Height	151.51	158.59	177.02	
Head Length	150.83	157.35	160.47	12
Head Width	103.12	108.91	115.94	11
HSA Index	3.01	2.57	2.21	ц Ц
Intercanthal Width	24.72	25.72	26.53	10
Intracranial Volume Level 2 to 10	689.16	842.09	873.98	
Intracranial Volume Sag-Ex-T	861.38	1190.92	1254.10	9
Lower 1/3 Face Depth LEFT	59.58	52.81	63.01	
Lower 1/3 Face Depth RIGHT	57.27	48.98	60.55	
Lower 1/3 Face Height	40.63	42.07	54.51	
Lower 1/3 Face Height-Mandible	33.80	36.13	45.92	
Mandible Width	94.85	77.17	100.88	28
Middle 1/3 Face Depth LEFT	74.13	80.30	85.29	27
Middle 1/3 Face Depth RIGHT	73.97	80.43	84.30	u u
Nasal Asymmetry (Alar to Tip)	0.79	1.11	1.14	27
Nasal Tip Protrusion	10.76	11.24	14.31	26
Nose Height	24.69	27.47	27.66	
Nose Width	23.83	23.20	28.41	
Orbital Asymmetry	0.35	0.36	0.37	
Upper Face Height	8.27	10.50	7.51	
Upper Lip Vermillion Height	5.77	5.12	30.63	

Local malformations

[Görg et al, SHAPE: a visual computing pipeline for interactive landmarking of 3D photograms and patient reporting for assessing craniosynostosis, Under review]

Why data science and AI?

Thank you!

antonio.porras@cuanschutz.edu

colorado school of public health

National Institute of Dental and Craniofacial Research

R01DE032681R21DE031824R01DE030286R00DE027993K99DE032681F31DE033614

Eunice Kennedy Shriver National Institute of Child Health and Human Development

R42HD081712

National Center for Advancing Translational Sciences

UM1TR004933

