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Artificial Intelligence
Automated human-like problem solving...

Deep Learning
using certain neural networks...

What is Al?



Sometimes, learning from data is not ideal

What are radiological deep learning models actually learning? John Zech (medium.com)
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Al/ML: A Complete Story, Data to Patient Impact




Pedlatrlc Sep3|s Deflnltlon Task Force June 2019

35 experts from pedlatrlc CCM EM ID and nursmg general
pediatrics, pharmacy, informatics, research, and public health
Represent/ng 12 countrles and 6 cont/nents
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Is this sepsis?

Fever “Flu”

Septic shock

Sensitivity (early recognition) —

——— Specificity (correct diagnosis)

—_— Responsiveness to intervention




Pediatric Sepsis Burden
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Global, regional, and national sepsis incidence and mortality,
1990-2017: analysis for the Global Burden of Disease Study

Kristina £ Rudd, Sarah Charlotte Johnson, Kareha M Agesa, Katya Anne Shackelford, Derrick Tsoi, Daniel Rhodes Kievlan, Danny V Colombara,
Kevin S lkuta, Niranjan Kissoon, Simen Finfer, Carolin Fleischmann-Struzek, Flavia R Machado, Konrad K Reinhart, Kathryn Rowan,
Christopher W Seymour, R Scott Watson, T Eoin West, Fatima Marinho, Simon I Hay, Rafael Lozano, Alan D Lopez, Derek C Angus,
Christopher | L Murray, Mohsen Naghavi
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450,000
deaths ~)

Number in 2017 (millions)

2.9 million

<5 years old 5-19 years old



Mortality by World Bank Income Class

o
60.00 oz 60.00 i
v
< z
E AnLN £ 4000
:
20.00 é D ,% 20.00 é —A|7
J00 % 00
$$5% >>> $$$$ >>> $

Sepsis Septic Shock



Long-term Impacts on Survivors

Full recovery

< Sepsis = — Partial recovery
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family health * Impact on family, society
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Watson RS et al, Under Review



Current Pediatric Criteria

International pediatric sepsis consensus conference:
Definitions for sepsis and organ dysfunction in pediatrics™®

Brahm Goldstein, MD; Brett Giroir, MD; Adrienne Randolph, MD; and the Members of the
International Consensus Conference on Pediatric Sepsis

* Not data-driven
(“eminence-based”)

 Performed OK in some environments,
poorly in others

By this definition, many patients in the ED or on the
floor with non-life-threatening infection have
“sepsis”



2016: New Adult Criteria

Special Communication | CARING FOR THE CRITICALLY ILL PATIENT

The Third International Consensus Definitions
for Sepsis and Septic Shock (Sepsis-3)

Mervyn Singer, MD, FRCP; Clifford S. Deutschman, MD, MS; Christopher Warren Seymour, MD, MSc; Manu Shankar-Hari, MSc, MD, FFICM;
Dijillali Annane, MD, PhD; Michael Bauer, MD; Rinaldo Bellomo, MD; Gordon R. Bernard, MD; Jean-Daniel Chiche, MD, PhD;

« ADULTS
ONLY

Craig M. Coopersmith, MD; Richard S. Hotchkiss, MD; Mitchell M. Levy, MD; John C. Marshall, MD; Greg S. Martin, MD, MSc; g Data-d rive n +
Steven M. Opal, MD; Gordon D. Rubenfeld, MD, MS; Tom van der Poll, MD, PhD; Jean-Louis Vincent, MD, PhD; Derek C. Angus, MD, MPH
JAMA. 2016;315(8):801-810. doi:10.1001/jama.2016.0287 CO n Se n S u S

Box 3. New Terms and Definitions ° ngh

* Sepsis is defined as life-threatening organ dysfunction caused by resource

a dysregulated host response to infection. countries only




Pediatric Sepsis Definition Task Force Timeline

2018
+ SCCM support

* Panel formation

2019

» Salzburg Kick-Off

2020/21

» Systematic review
* International survey

» Successful NIH funding
(Bennett, Sanchez-Pinto)

2022
» Other
Manuscripts

» Data
Curation

2023

* Analyses
* Delphi process
» Consensus
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Conceptual Framework
Suspected infection <=24 hours

“An infection with Iife-threateningJ organ dysfunction”

/

Primary outcome: in-hospital mortality

|dentify the best-performing organ dysfunction
subcomponents from existing scores, applicable
to higher and lower resource settings



10 Study Sites: 6 Higher and 4 Lower Resource Settings
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Cohort Size: >3.6 million Pediatric Hospital Encounters

3,000,000

2,000,000

Encounters

1,000,000

ED Floor ICU
Location




Representative Population:
Adequate Age Distribution
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Age Group




Representative Population:
Diverse Race and Ethnicity
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STEP 1 RESULTS: Identify the best organ dysfunction

subcomponents of existing scores




STEP 2 RESULTS: Sepsis Models Using Machine Learning

All-Stars Model 1: Eight Organs
Machine Learning » Cardiovascular -« Endocrine
» Respiratory * Renal
9490 « Coagulation * Immuno
0 | - 0 * Neurologic * Hepatic

Model 2: Four Organs

® % o

Cardiovascular

* Respiratory
0.. « Coagulation
,og, «  Neurologic




STEP 3 RESULTS: Translate the Best Sepsis Model to the
“  Phoenix Sepsis Score

\ One integer, 0-13




_ Phoenix Sepsis Score has Good
STEP 3 RESULTS: Calibration in Higher Resource Sites

In-hospital mortality
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STEP 3 RESULTS: Phoenix Sepsis Score has Good
; Calibration in Lower Resource Sites

@ In-hospital mortality
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STEP 4 RESULTS:

One integer, 0-13

Translation of Phoenix Sepsis Score to
Phoenix Sepsis/Septic Shock Criteria
Selecting Thresholds

Task Force Delphi process:

« Sepsis: on
Phoenix Sepsis Score

« Septic Shock: Sepsis and




~ PPV and Sensitivity for Phoenix Sepsis Criteria
STEP 4 RESULTS: Higher than for 2005 IPSCC Sepsis Criteria

E PPV vs sensitivity for death at higher-resource sites 1-5
in children with no comorbidities (152 deaths among
24470 encounters)
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Research

JAMA | Original Investigation

Development and Validation of the Phoenix Criteria for Pediatric Sepsis
and Septic Shock

L. Nelson Sanchez-Pinto* MD, MBI; Tellen D. Bennett*MD, MS; Peter E. DeWitt, PhD; Seth Russell, MS;

Margaret N. Rebull, MA; Blake Martin, MD; Samuel Akech, MBChB, MMED; David J. Albers, PhD;

Elizabeth R. Alpern, MD, MSCE; Fran Balamuth, MD, PhD, MSCE; Melania Bembea, MD, MPH, PhD;

Mohammod Jobayer Chisti, MBBS, MMed, PhD; Idris Evans, MD, MSc; Christopher M. Horvat, MD, MHA;

Juan Camilo Jaramillo-Bustamante, MD; Niranjan Kissoon, MD; Kusum Menon, MD, MSc;

Halden F. Scott, MD, MSCS; Scott L. Weiss, MD; Matthew O. Wiens, PharmD, PhD; Jerry J. Zimmerman, MD, PhD;
Andrew C. Argent, MD, MBBCh, MMed; Lauren R. Sorce, PhD, RN, CPNP-AC/PC; Luregn J. Schlapbach, MD, PhD;
R. Scott Watson, MD, MPH; and the Society of Critical Care Medicine Pediatric Sepsis Definition Task Force * Co-first aut

— 2024

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT
International Consensus Criteria for Pediatric Sepsis and Septic Shock
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Luregn J. Schlapbach*MD, PhD; R. Scott Watson*MD, MPH; Lauren R. Sorce*PhD, RN; Andrew C. Argent*MD, MBBCh, MMed; Kusum Menon, MD, MSc;
Mark W. Hall, MD; Samuel Akech, MBChB, MMED, PhD; David J. Albers, PhD; Elizabeth R. Alpern, MD, MSCE; Fran Balamuth, MD, PhD, MSCE; &
Melania Bembea, MD, PhD; Paolo Biban, MD; Enitan D. Carrol, MBChB, MD; Kathleen Chiotos, MD; Mohammod Jobayer Chisti, MBBS, MMed, PhD;
Peter E. DeWitt, PhD; Idris Evans, MD, MSc; Claudio Flauzino de Oliveira, MD, PhD; Christopher M. Horvat, MD, MHA; David Inwald, MB, PhD;

Paul Ishimine, MD; Juan Camilo Jaramillo-Bustamante, MD; Michael Levin, MD, PhD; Rakesh Lodha, MD; Blake Martin, MD; Simon Nadel, MBBS;
Satoshi Nakagawa, MD; Mark J. Peters, PhD; Adrienne G. Randolph, MD, MS; Suchitra Ranjit, MD; Margaret N. Rebull, MA; Seth Russell, MS; =
Halden F. Scott, MD; Daniela Carla de Souza, MD, PhD; Pierre Tissieres, MD, DSc; Scott L. Weiss, MD, MSCE; Matthew O. Wiens, PharmD, PhD;
James L. Wynn, MD; Niranjan Kissoon, MD; Jerry J. Zimmerman, MD, PhD; L. Nelson Sanchez-Pinto, MD; Tellen D. Bennett, MD, MS;

for the Society of Critical Care Medicine Pediatric Sepsis Definition Task Force * Co-first authors
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Extra Slides



What about ChatGPT etc. (Generative Al)?

First: What is a large language model (LLM)?
e A type of deep learning model (a transformer) trained to predict sequences
o Textis sequences of words

e Trained on enormous amounts of text

o (generally, available on the internet)

e General LLMs are very expensive to train (computing resources)

o Although specific LLMs have been trained affordably

Shah N et al. JAMA 2023



How was ChatGPT built?

Stepi Step 2 Step 3
Collect demonstration data Collect comparison data and Optimize a policy against the
and train a supervised policy. train a reward model. reward model using the PPO

reinforcement learning algorithm.

A prompt is .:"} A prompt and J":‘; A new prompt is <
sampled from our Explsin rsinforcsment several model Explainreinforcement sampled from Wirite:a story
prompt dataset. laaming ta a & year ok outputs are lsarning to a & yaar old, the dataset. Abewtaiters,
sampled.
| f
The PPO model is e

Alabeler initialized from the S
demonstrates the supervised policy. W
desired output ;
behavior. *

Alabeler ranks the
outputs from best
to worst.

¥
The policy generates Once upan a time._
an output.

0-0-0 7

This data is used to The reward model .RM
fine-tune G E’Tw'iE l calculates a reward .&ﬁ.
with supervised . for the output. Y
learning.

This data is us ‘/:-?'s&% |

to train our g The reward is used

reward mo to update the

0-0:0-0 policy using PPO. i

Reinforcement Learning with Human Feedback




ChatGPT etc.

e What will LLMs definitely be good for in medicine?
o Summarization
o Documentation
o Communications (including patient-facing chatbots)
o Accelerating Analytics
o QOperations!




ChatGPT etc.

e What might LLMs be good for in medicine?
o Diagnosis (first: adult, outpatient, conditions with a solid evidence base)
o Interpretation of other complex data (waveforms, images, etc.) (long-term, massive compute
needed)




LLMs: things to watch out for

e Hotel California for potentially sensitive data
e Has the model seen those data already (on medrxiv, pubmed, etc.)?
e "Hallucinations"

- LLMs are like [insert very confident subspecialty]. They sound
certain, even when they are wrong.




Specific Campus Expertise in LLMs

Yanjun Gao, PhD
Assistant Professor, DBMI

Start date Sept 1, 2024
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