Advancing Drug Discovery with AI: An Integrated Fragment-Based Generative Model

Yuto Suzuki and Farnoush Banaei-Kashani Department of Computer Science University of Colorado Denver

Potential of Generative AI in Drug Discovery

- Drug discovery is a very time-consuming and expensive process
- Generative AI has been getting attention to accelerate drug discovery

https://www.efpia.eu/about-medicines/development-of-medicines/smes-in-europe/

Unique Challenges of Generative AI in Drug Discovery

• Extremely limited data and complex atom connections are the main challenges for AI to generate molecules

Extremely Limited Data

Complex Atom Connections

Types of Generative AI for Molecules

• Fragment-based generative model can generate more realistic structures

The Selection of Useful Fragments is Crucial

- Fragments are akin to words
- Understanding sentences requires knowledge of words and grammar

Model Overview

Experimental Methodology

Experimental Results

 Our Al generated 64 new and synthesizable Acrylates out of 1,000 samples, whereas the state-of-the-art model produced only 39. (60% increase)

Model	Dis w/	Dis w/o	Valid	RS	Unique	Novel	Cham.	Div.	Mem.
GraphNVP	-	-	0	-	-	-	-	-	-
HierVAE (w/ft)	0	2.6%	100%	0.98	3%	100%	0.44	0.67	0%
HierVAE (w.ft)	0	7.8%	100%	0.56	32%	95%	0.20	0.77	0%
DEG	3.9%	13.6%	100%	0.33	<u>70%</u>	100%	0.63	0.87	45%
LVSEF(ran)	<u>6.2%</u>	<u>19.2%</u>	100%	0.35	72%	100%	<u>0.60</u>	<u>0.84</u>	51%
LVSEF (bal)	6.4%	20.3%	100%	0.44	63%	100%	0.52	0.84	51%
				-					

Results with 32 Acrylates

Sample fragments

Future Work

- Apply this AI model to real-world drug discovery (KDM4 inhibitors)
- Develop an AI model that can modify molecules while preserving their specific functionalities

Thank you very much.

Acknowledgement

• This work used the computing resources at the Center for Computational Mathematics, University of Colorado Denver, including the Alderaan cluster, supported by the National Science Foundation award OAC-2019089. • We would like to express our deepest gratitude to Professor Daniel LaBarbera, PhD, Director of the CU AMC Center for Drug Discovery and Co-Director of the **Drug Discovery and Development Shared Resource** (D3SR), for his invaluable collaboration on this research. We are also thankful to his dedicated team for their unwavering support and contributions.