

Tanya L. Alderete, PhD
Associate Professor
Johns Hopkins University
Department of Environmental Health and Engineering
Bloomberg School of Public Health

CU-CSU Summit
Chronic Disease Frontiers: Colorado Approach to Causes and Treatment
August 13, 2025

Plastics: What Are They and Why Do They Matter?

Polymer Chains

Long chains of repeating **molecules** that make up plastics.

Additives

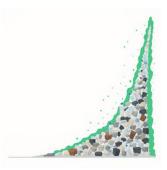
Chemicals mixed in to enhance flexibility, strength, or longevity.

Over Time, Plastics Break Down into Smaller Fragments

Plastic Items Shed Tiny Fragments: **Microplastics** (<5 mm) and **Nanoplastics** (<1,000 nm)

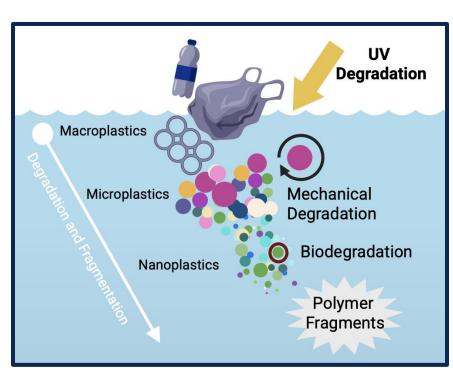
Particles pollute the environment and contaminate water, air, and food.

Plastic Production is on the Rise

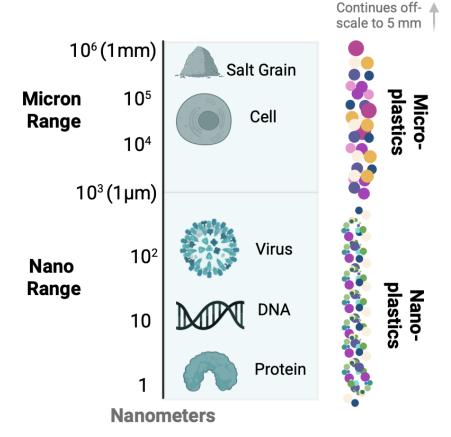

Humans Have Made 8.3 Billion Tons of Plastics

25,000 X Empire State Building (331,000 metric Tons)

Rapid Rise of Plastics Production (Dates Back to 1950)



TRIPLE Plastic Production by 2060


>16,000 chemicals used to make plastics 4,200 are chemicals of concern

Plastics are multipollutant vectors, combining the physical hazards of particulates with a mixture of endocrine-disrupting and pro-inflammatory chemicals.

Plastics Never Stop Being Plastics – They Get Smaller and Smaller

Pfohl et al. (2022), Environmental Science & Technology

7 Most Common Types of Polymers in Production and Their Uses

Polymer Type ^a	Resin identification code ^a	Product Examples ^a	% of Plastics Production by Polymer Type ^b
Polyethylene terephthalate (PET/PETE)		Water/juice/soft drink bottles, ovenable/microwaveable food trays, carryout food containers, shampoo bottles, carpet, films, synthetic clothing (polyester)	26.7% (in combination with PP)
High density polyethylene (HDPE)	23	Toys, reusable water bottles, food storage containers, cereal box liners, wire/cable covering, outdoor signage	12.3%
Polyvinyl chloride (PVC)	₹	Packaging (clam shells, shrink wrap) rigid pipes, flooring, building siding, wire insulation, garden hoses, gutters, medical products	10%
Low density polyethylene (LDPE)		Plastic film/baggies (dry cleaning, newspapers, garbage bags), single-use bags, juice boxes, wire insulation, container lids, toys, shrink wrap, beverage cup liners	17.5%
Polypropylene (PP)	25	Carpet, rope, luggage, marine equipment, appliances, straws, medical components, plastic caps/lids, carpeting	26.7% (in combination with PET)
Polystyrene (PS)	263	Car parts, appliances, TVs/computers, medical lab equipment, carryout food containers (Styrofoam™), yogurt containers, cups/plates/utensils, packing peanuts, egg cartons	6.3%
Other (e.g., polycarbonate [PC]; polylactic acid [bioplastic PLA]; poly methyl acrylate [PMA]; polyamide [PA]; polyvinyl alcohol [PVA])		Safety shields/glasses, toys, oven-baking bags, 3/5 gallon reusable water jugs, ketchup bottles, custom packing, synthetic clothing (nylon and acrylic), detergent pods, resins/paints, automotive, safety glass	27.2%

Given their widespread use these polymers have been the focus of many studies:

- Polyethylene (PET)
- Polypropylene (PP)
- Polycarbonate (PC)

Human Exposure to Plastics and Adverse Health Effects

Sources

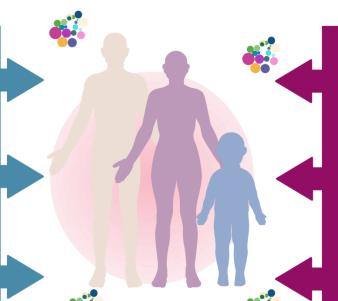
Everyday Plastic Products

(Food packaging, clothing, & personal care & household products)

Children's

(Products, toys, clothing, furniture)

Occupational


(Exposure at various stages of the plastic chain)

Exposure Pathways (examples)

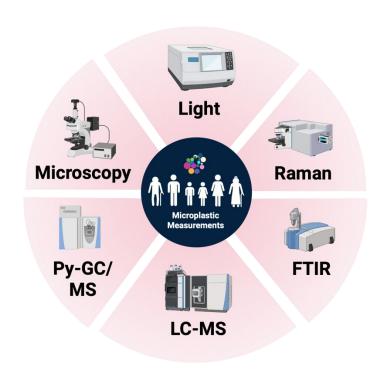
Ingestion of Contaminated Food, Water, Dust

Inhalation of Contaminated Air

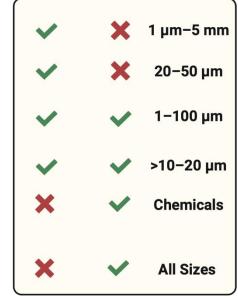
Dermal Contact

Adverse Health Effects (examples)

Systemic Inflammation


Vascular & Organ Damage

Neurotoxicity & Cellular Damage


Endocrine Disruption

Carcinogenic Effects

Methods for Measuring Micro- and Nano-Plastics (MNPs)

Microscopy

Particle size, counts, morphology

Light Microscopy

Smaller size, counts, morphology

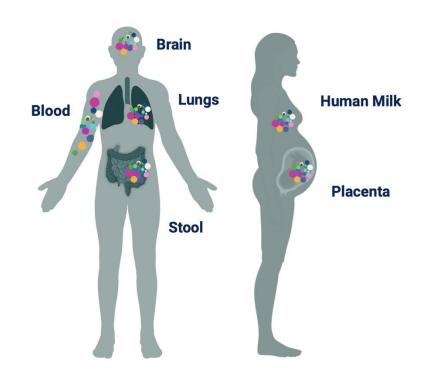
Raman Spectroscopy

Spectral intensity, size, counts

FTIR Spectroscopy

Spectral peaks, polymer ID

LC-MS


Quantifies plastics and additives via chemical depolymerization

Py (Pyrolysis)-GC/MS

Quantifies polymers and additives via thermal breakdown

Detecting MNPs requires a combination of techniques, each with its own strengths and limitations depending on particle size, sample matrix, and information needed (physical vs. chemical properties).

Exposure Isn't Just Environmental, It's Internal: Plastics in Human Samples

Average concentration of 1.6 μg/ml (e.g., PE, polymers of styrene)

Placenta (in all portions)

(Size range: 5 to 10 µm)

Human milk (20.2 particles/g)

(e.g., PE, PP, polyvinyl chloride)

14x higher in infant vs adult stool (Dietary PET/day)

PE: polyethylene; PP: polypropylene; PET: polyethylene terephthalate Roslan et al. (2024), J Glob Health

Urgent need to better understand what these exposures mean for health—especially in vulnerable populations like pregnant people and infants

Chemical and Physical Effects of Micro- and Nano-Plastics

Mechanism	Source	Health Impacts	
Leaching of Additives	3,~A	Endocrine, immune, neurotoxic, carcinogenic effects	
Physical Particle Effects	(2) (E) (m) (g)	Inflammation, ROS, cell damage, barrier disruption	
Systemic Circulation	***	Accumulation in blood, liver, kidney, brain, placenta, stool	
Developmental Exposures	3	Fetal exposure, reproductive toxicity	
Vector for Co- Pollutants		Enhanced exposure to environmental toxicants	
Microbiome Alterations	冷 紫	Alterations to gut bacterial composition & function	

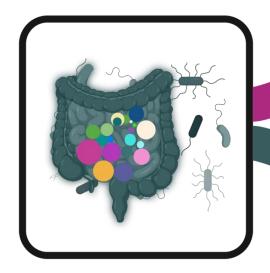
The Gut Microbiome may be Particularly Vulnerable to MNP Exposure

The gut is the primary entry point for plastics, which can trigger key disruptions

Lower Gut Bacterial Diversity

Higher Abundance of Pathogenic Bacteria

Lower Mucus Secretion



Reduced Gut Barrier Function

Intestinal Inflammation

Summary of Human Studies: Plastics and the Gut Microbiome

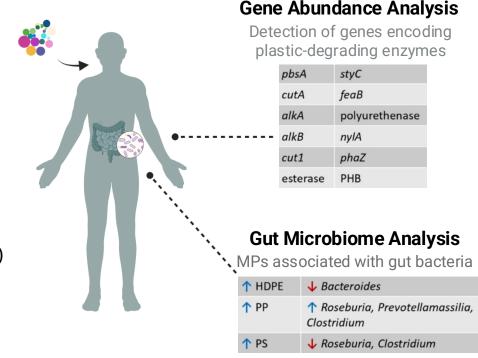
Proinflammatory / Pathogenic

SCFA Producers (Mixed)

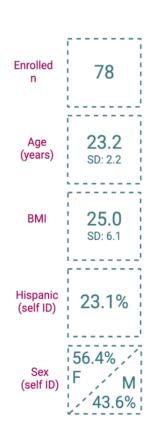
Figure summarizes general trends across studies: Zhang et al. (2022), Frontiers in Public Health; Nugrahapraja et al. (2022), Environments; Liu et al. (2022), Ecotoxicology and Public Health; Jimenez-Arroyo et al. (2023), Science of the Total Environment; Ke et al. (2023), EbioMedicine; Hong et al. (2024), Journal of Hazardous Materials

Plastics in Adult Stool are Associated with the Gut Microbiome

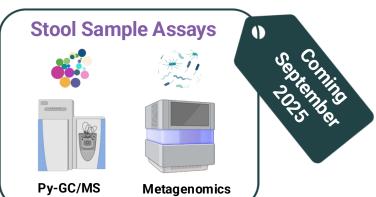
22 healthy participants (20-50 years old) from 2 study populations: Kenjeran, Surabaya, Indonesia (9 male and 2 female) and Pacet, Mojokerto, Indonesia (5 male and 6 female)


Stool Measures

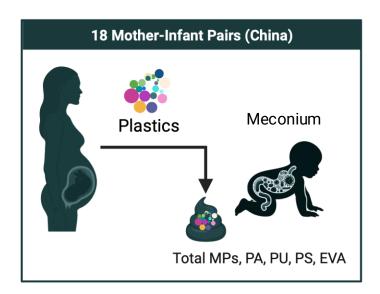
Gut Microbiome


Taxa Abundance Gene Abundance

Plastics

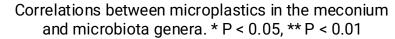

Raman spectroscopy HDPE (high-density polyethylene) PP (polypropylene) PS (polystyrene)

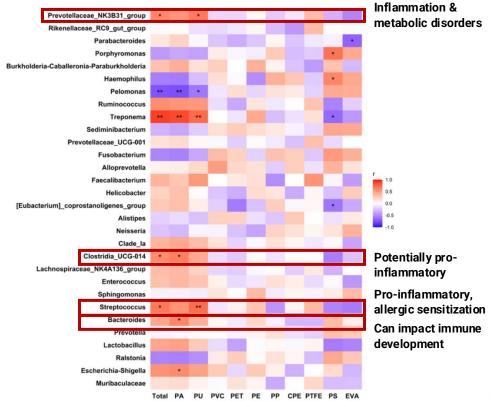
Pilot Study: Stool Plastics and the Gut Microbiome


Tanya Alderete, PhD Johns Hopkins

Doug Walker, PhD Emory University

How might plastic exposure during pregnancy, infancy, and early childhood impact health?

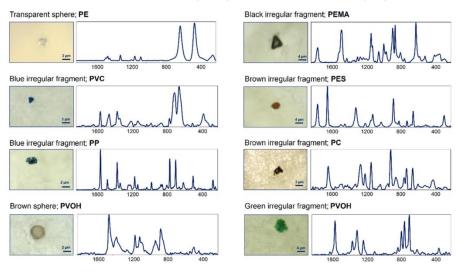

Plastics in Newborn Stool are Associated with Gut Bacteria



Plastics

PA, polyamide; PU, polyurethane; PE, polyethylene; PET, polyethyleneterephthalate; PP, polypropylene; PVC, poly(vinyl chloride); POM, polyoxymethylene; EVA, ethylene vinyl acetate copolymer; PTFE,polytetrafluoroethylene; CPE, chlorinated polyethylene; PC, polycarbonate; PS, polystyrene; PMMA, polymethylmethacrylate; PLA, poly(lacticacid).

Suggestive of in utero exposures


Beyond the *In Utero* Period: Plastics in Human Milk are Another Source of Early Life Exposure

Samples: Human milk 1 week after delivery (Italy, n=34); Method: Raman Microspectroscopy

Plastics in **76% of samples** (size range: 2 to 12 µm):

Most abundant plastics being composed of polyethylene (PE), polyvinyl chloride (PVC), and polypropylene (PP)

Ragusa et al. (2022), Polymers

While I have largely focused on plastics in the context of the gut microbiome, it's also critical to ask:

Where else do these particles go, and what are their implications for human health?

The Plastics Health Burden: Disease, Death, and Economic Costs

This month, The Lancet published its first "Countdown on Health and Plastics"

Microplastics are Associated with Higher Chronic Disease Prevalence

- **152 US coastline counties** located within 200 meters of large bodies of water
- Microplastic data (National Centers for Environmental Information's marine microplastics geodatabase)
- Socioeconomic and environmental factors (e.g., income, employment, social vulnerability, air pollution)

Counties exposed to **high microplastic** concentrations in nearby ocean waters had significantly **higher prevalence** of:

- ▲ Type 2 diabetes (+18%)
- Coronary Artery Disease (+7%)
- ▲ Stroke (+9%)

How can Plastics Contribute to Disease? They Don't Just Pass Through Us, They Accumulate in Organs

Brief Communication | Open access | Published: 03 February 2025

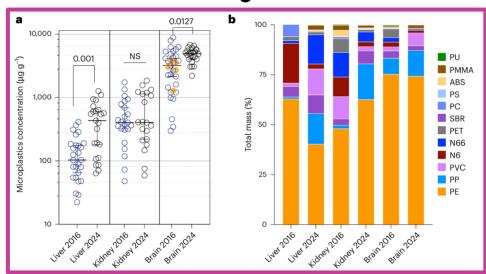
Bioaccumulation of microplastics in decedent human brains

Alexander J. Nihart, Marcus A. Garcia, Eliane El Hayek, Rui Liu, Marian Olewine, Josiah D.

Kingston, Eliseo F. Castillo, Rama R. Gullapalli, Tamara Howard, Barry Bleske, Justin Scott, Jorge

Gonzalez-Estrella, Jessica M. Gross, Michael Spilde, Natalie L. Adolphi, Daniel F. Gallego, Heather

S. Jarrell, Gabrielle Dvorscak, Maria E. Zuluaga-Ruiz, Andrew B. West & Matthew J. Campen


Samples: Liver, Kidney, Brain (Frontal Cortex)

Collected 2016 and 2024 (8-year Gap)

Methods: Py-GC/MS, attenuated total reflectance—Fourier transform infrared spectroscopy and electron microscopy with energy-dispersive spectroscopy

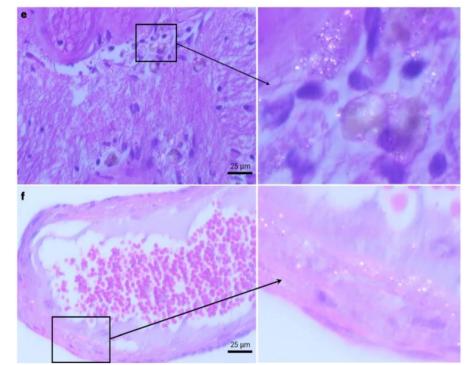
Significant Presence of Plastics in All Organs

Plastics Increasing in Brain and Liver

a, Microplastic concentrations in liver, kidney and brain (n = 20-28 separate participants for each timepoint). Data on a \log_{10} scale, with bar representing group median value and 95%CI. Orange = samples analyzed independently at Oklahoma State University. Brain MNP concentrations were higher than liver and kidney (P < 0.0001). **b**, Distribution of 12 different polymers suggests greater accumulation of PE in brain relative to liver or kidney. *Polyethylene (PE).

Plastics in Dementia Cases Appear in Brain Vascular Wall and Immune Cells

Brief Communication | Open access | Published: 03 February 2025


February 4, 2025

Bioaccumulation of microplastics in decedent human brains

Alexander J. Nihart, Marcus A. Garcia, Eliane El Hayek, Rui Liu, Marian Olewine, Josiah D. Kingston, Eliseo F. Castillo, Rama R. Gullapalli, Tamara Howard, Barry Bleske, Justin Scott, Jorge Gonzalez-Estrella, Jessica M. Gross, Michael Spilde, Natalie L. Adolphi, Daniel F. Gallego, Heather S. Jarrell, Gabrielle Dvorscak, Maria E. Zuluaga-Ruiz, Andrew B. West & Matthew J. Campen

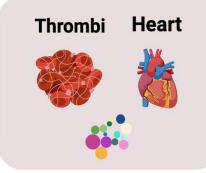
(polarization wave microscopy)

The Human Brain May Contain as Much as a Spoon's Worth of Microplastics, New Research Suggests ~7 grams The amount of microplastics in the human brain appears to be increasing over time: Concentrations rose by roughly 50 percent between 2016 and 2024, according to a new study Smithsonian magazine Sarah Kuta - Daily Correspondent

In dementia samples, many refractile inclusions were prominent in regions with inflammatory cells and along the vascular wall

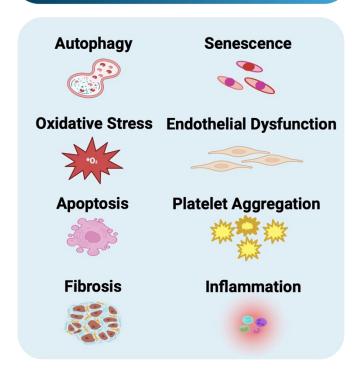
Does not establish causation – but raises important questions about whether accumulation of plastics in sensitive tissues like the brain could contribute to neuroinflammation or neurodegenerative processes

Microplastics in the Cardiovascular System: Human Evidence & Mechanisms


Microplastics Detected in Human Cardiovascular Tissues

Mechanism Identified in Animal & In Vitro Studies

Carotid Plaques



Associated with myocardial infarction, stroke, and all-cause mortality

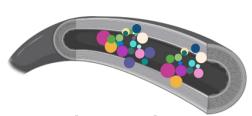
Plastics may be Contributing to Disease Processes (Mechanistic Insights)

Microplastics in Arterial Plaques Predict Cardiovascular Events

ORIGINAL ARTICLE

Microplastics and Nanoplastics in Atheromas and Cardiovascular Events

Authors: Raffaele Marfella, M.D., Ph.D.

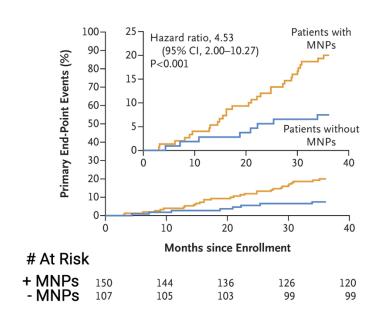

7 Francesco Prattichizzo, Ph.D., Celestino Sardu, M.D., Ph.D., Gianluca Fulgenzi, Ph.D., Laura Graciotti, Ph.D., Tatiana Spadoni, Ph.D., Nunzia D'Onofrio, Ph.D.,

8 Jan Giuseppe Paolisso, M.D. Author Info & Affiliations

Published March 6, 2024 | N Engl J Med 2024;390:900-910 | DOI: 10.1056/NEJMoa2309822 | VOL. 390 NO. 10

Prospective, multicenter, observational study involving patients undergoing carotid endarterectomy for asymptomatic carotid artery disease

Total N = 257 Mean follow-up: 2.8 years


Carotid Artery Plaque Polyethylene (58%) Polyvinyl Chloride (12%) 4.5x
Higher Risk
of Cardiovascular Events
4.53 (95% CI: 2.00-10.27)

MI, Stroke, Death (any cause)

•

MNPs in plaque predict higher incidence of events over time

Summary

- Plastics have been detected in a range of human samples including, but not limited to, blood, placenta, milk, and stool indicating widespread exposure
 - Can trigger oxidative stress, inflammation, and alternations to the gut microbiome, potentially contributing to chronic disease risk
- Plastics have been associated with:
 - Type 2 diabetes
 - Dementia
 - Cardiovascular effects (e.g., endothelial dysfunction, platelet aggregation)
- Urgent need for large prospective and tightly controlled studies focused on MNPs and how they may contribute to chronic disease risk

What Can we Do About Plastics? UN Plastics Treaty: Aiming to End Plastic Pollution

175 countries agreed to develop a legally binding treaty addressing plastic pollution across its full life cycle. Goal: Finalize treaty by end of 2025

3 Key Meetings

- 2022: Rules set; early divide on national vs global obligations
- 2023: Began talks; led to "zero draft"
- **2023**: Continued drafting and revisions
- 2024: Focus on impacts; upstream measures weakened
- 2024: Record participation; no consensus on production caps

https://www.globalplasticlaws.org/un-global-plastics-treaty

Industry pressure has diluted treaty ambition and contributed to ongoing gridlock, with negotiators deadlocked over binding production limits as industry-backed coalitions push for voluntary approaches.

Acknowledgements

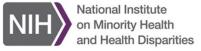
JHU

- •Ellie Holzhausen, PhD
- Devendra Paudel, PhD
- ·Haonan Li, PhD
- Kate Marquess, PhD
- Nathan Young, MS
- Nicole Brown
- Adrianna Luger

Emory

- •Donghai Liang, PhD
- Douglas Walker, PhD
- Dean Jones, PhD
- Jeremy Sarnat, ScD
- ·Howard Chang, PhD

UNC


Daisy Brumit

Funding Sources

NIEHS K99/R00 ES027853 (PI), HEI Rosenblith New Investigator (PI), NIEHS R01 ES035035 (PI), NIMHD P50 MD017344 (mPI Project 1), NIMHD R01 ES035056-03 (mPI), NIEHS R01 ES029944 (Co-I), NHGRI U01 HG013288 (Co-I), 2022 USC EH-Pilot Grant (mPI), ECHO DAC, CU Boulder Seed Grant (PI, HYPHY)

Contact Information

Presentation created in

