Cartilage Regeneration – from Pediatric Growth Plate Injuries to Osteoarthritis

Karin A. Payne, PhD

Associate Professor, Department of Orthopedics University of Colorado Anschutz Medical Campus

CU – CSU Summit

Chronic Disease Frontiers: Colorado Approach to Causes and Treatment

August 13, 2025

Disclosures

No disclosures

Growth Plate Cartilage and Articular Cartilage

Feature	Growth Plate Cartilage		
Location	Found at metaphysis of long bones in children		
Function	Enables longitudinal bone growth during development		
Structure	Hyaline cartilage organized into zones		
Cell Types	Chondrocytes in columns (proliferative, hypertrophic)		
Vascularization	Avascular		
End Fate	Undergoes endochondral ossification		
Regenerative Capacity	Active during growth; ceases after skeletal maturity		
Clinical Relevance	Growth disorders, limb length discrepancies		

Chagin A.S. et al. Pediatr Res 87, 986-990 (2020).

Longitudinal growth occurs by endochondral ossification – cartilage is gradually replaced by bone

Growth Plate Cartilage and Articular Cartilage

Feature	Articular Cartilage		
Location	Covers ends of bones in synovial joints		
Function	Facilitates smooth joint movement; absorbs shock Hyaline cartilage with zonal organization		
Structure			
Cell Types	Chondrocytes in lacunae		
Vascularization	Avascular		
End Fate	Maintains structure throughout life		
Regenerative Capacity	Limited to None		
Clinical Relevance	Osteoarthritis, cartilage injury		

Haltmayer E. et al. PLOS ONE. 14. e0214709. 10.1371.

Growth plate injuries can cause deformity

Angular deformities
Limb length discrepancies

Devastating for patients and limited clinical treatments

Growth plate injuries: Current treatments

- bony bar spans <50% of growth plate volume
- 2 years or 2 cm of growth remaining

Growth plate injuries: Current treatments

- bony bar spans <50% of growth plate volume
- 2 years or 2 cm of growth remaining

BONY BAR RESECTION 18-30% poor outcome

Paleyinstitute.org

Growth plate injuries: Current treatments

- bony bar spans <50% of growth plate volume
- 2 years or 2 cm of growth remaining

BONY BAR RESECTION

18-30% poor outcome

 bony bar spans >50% of growth plate volume

EPIPHYSIODESIS

Prone to infections, multiple hospitalizations

NO treatment is attempting to regenerate the growth plate cartilage

Cartilage injuries & lesions

- Individuals with cartilage injuries are 4.2X more likely to develop OA than those without an injury.
- Cartilage lesions do not heal on their own.

Osteoarthritis (OA) & lesions

Osteoarthritis

- OA is the #3 cause of disability in the U.S.
- Inflammation-associated OA leads to cartilage degeneration and formation of cartilage lesions.
- Cartilage lesions do not heal on their own.

No regenerative therapies exist for cartilage lesions in OA or non-OA patients.

Growth Plate Chondrocyte Hypertrophy is an Orderly Differentiation Process

Articular Chondrocytes

OA: Hypertrophy of Articular Chondrocytes

Research Program

To develop regenerative medicine approaches to treat growth plate injuries

Regenerate Growth
Plate Cartilage

Rat model of growth plate injury: proximal tibia drill-hole defect

Rat model of growth plate injury: proximal tibia drill-hole defect

Local delivery of α-VEGF

Collaboration with Melissa Krebs, PhD

Antibody release can be modulated in alginate-chitosan hydrogels

Fletcher N. et al. Mater. Sci. and Eng. C. 2016; 801-806.

Study design

Chris Erickson, PhD

Alginate:Chitosan Hydrogel

★ Anti-VEGF Antibody~7ug anti-VEGF₁₆₅

	Treatment groups	Hydrogel name	α-VEGF	Outcomes
1	Intact	-	-	MicroCT, histology
2	Untreated	-	-	 Perfusion/Blood vessels
3	Alginate:chitosan 90:10	Quick Release	-	N = 8 limbs total (4 male, 4 female) per time point per outcome
4	Alginate:chitosan 90:10 + anti-VEGF antibody	Quick Release + α-VEGF	+	
5	Alginate:chitosan 50:50	Slow Release	-	
6	Alginate:chitosan 50:50 + anti-VEGF antibody	Slow Release + α-VEGF	+	

Local delivery of α -VEGF reduces bony bar formation

Mean +/- SD, one-way ANOVA, N = 8 *P<0.05 vs. Untreated same time point

Local delivery of α -VEGF reduces vessel formation

Mean +/- SD, one-way ANOVA, N = 8 *P<0.05 vs. Untreated same time point \$P<0.05 vs. QR same time point

Quick delivery of α-VEGF increases cartilage repair tissue

Could modulation of angiogenesis be a preventative treatment for bony bar formation?

Blocking VEGF improves articular cartilage repair

Rat osteochondral injury

Implant muscle-derived stem cells (MDSCs) transduced to express:

- BMP4 (chondrogenic factor)
- VEGF (angiogenesis)
- sFlt1 (block angiogenesis)

Regenerative Biomaterial to Treat Growth Plate Injuries

Cartilage-Mimetic Hydrogel

Collaboration with Stephanie Bryant, PhD

With Laurie Goodrich, DVM, PhD at CSU

Clinical Problem: Growth Plate Injuries

Biochemical cues + Mechanical cues →

cell differentiation cell synthesizing capabilities

Solution: 3D Printed Growth Plate Mimetic Composite

Multidisciplinary Team

Karin Payne, PhD

 Animal models of growth plate injury

 Chondrogenic differentiation

Nancy Hadley Miller, MD
- Clinical expertise with
growth plate injuries

Stephanie Bryant, PhD

- Cartilage mimetic hydrogel
- 3D printing
- Cartilage tissue engineering

Robert McLeod, PhD

- Additive manufacturing
- Photopolymers

Virginia Ferguson, PhD

- Bone and cartilage tissue characterization
- 3D printing characterization

Designing a 3D printed growth plate mimetic composite

Growth Plate: Area of Bone Growth

3D printed structure is infilled with hydrogel

Hydrogel (green) can be injected in between the individual pillars

Mechanical properties vary across the growth plate

Kevin Eckstein, Ph

Microindentation maps mechanical properties across the zones of the rabbit growth plate

3D printed cartilage mimetic composite

Digital Light Processing
Poly(ethylene glycol) diacrylate (PEGDA)

61-98 pillars with lattice on top and bottom layers

Rabbit model of growth plate injury

Yangyi Yu, MD

Bony Bar Formation

Surgery 2 (9 weeks old)

resection

Bony Bar Resection

3D printed composite led to increased limb lengthening

*p<0.05 compared to other treatment groups

3D composite led to cartilage-like tissue at periphery

Alcian Blue Hematoxylin stain at 8 weeks post-treatment

Mineralization within 3D printed composite

Kristine Fischenich, Ph

Discussion

- 3D printed structure infilled with cartilage-mimetic hydrogel leads to
 - Increased tibial lengthening important functional outcome
 - Some cartilage tissue formation
 - Evidence of mineralized tissue around pillars

What happens at early timepoints???

What have we learned?

- Blocking angiogenesis is a potential avenue to prevent bony bar formation and repair articular cartilage.
- 3D printed biomimetic composite postpones the onset of skeletal deformities.
 - Outcomes may be further improved to promote chondrogenesis.
 - Test additional biological factors to recruit MSCs and/or add MSCs.
 - · Anchoring mechanisms.
 - Technology can also be used for articular cartilage regeneration due to injury or osteoarthritis.

Acknowledgements

Lab members

- Kristine Fischenich, PhD
- Ana Ferreira Ruble, DVM, PhD
- Pochih Shen, MD
- Rachel Martindale, MS
- Sherly Rashmi Manoharan

Past Lab Members

- Francisco Rodriguez-Fontan, MD
- Christopher Erickson, PhD
- Yangyi Yu, MD
- Stacey Thomas, MS
- Joseph Fuchs, MD
- Katie Yamamura, MD
- Shane Weatherford, MD
- Bianca Guillesser

Department of Orthopedics Nancy Hadley-Miller, MD

University of Colorado-Boulder

- ■Stephanie Bryant, PhD
- ■Virginia Ferguson, PhD
- ■Robert McLeod, PhD
- Elizabeth Aisenbrey, PhD
- ■Camila Uzcategui, PhD
- Archish Muralidaran, PhD
- ■Sarah Schoonraad, PhD
- Laurel Stefani
- Kevin Eckstein, PhD
- ■Boyuan Liu, PhD

Colorado School of Mines

- ■Melissa Krebs, PhD
- •Michael Stager, PhD
- ■Jake Newsom, PhD
- ■Nathan Fletcher, PhD

Thank You!

Karin.payne@cuanschutz.edu